Cнижение потерь в сетях 0,4 кВ

МЭТЗ им. В.И. Козлова. Крупнейшее в мире предприятие по производству силовых распределительных трансформаторов

Силовые трансформаторы высокого класса

Герметичные трансформаторы ТМГ

Преимущества трансформаторов типа ТМГ производства Минского электротехнического завода им. В.И. Козлова

Инновационный подход к конструкции и схеме подстанций мощностью 630;1000 кВА напряжением 6(10)/0,4 кВ

ТМГсу - ТМГ с симметрирующим устройством. Решение проблемы несинусоидальности напряжения и повышения качества электроснабжения

ТМГ12. Энергосбережение и другие преимущества современного трансформаторостроения

Силовые трансформаторы 10(6)/0,4 кв области применения разных схем соединения обмоток

Испытания деревянных прокладок

Cнижение потерь в сетях 0,4 кВ

Методика экономического обоснования выбора трансформатора

Перегрузочная способность силовых масляных трансформаторов мощностью 16 ... 2500 кВА

Акустические характеристики силовых масляных трансформаторов

Допустимые перегрузки трансформаторов ТСГЛ, ТСЗГЛ, ТСЗГЛФ

Устройство вентиляции в отсеках (камерах) трансформаторов

Вводы НН и ВН для силовых трансформаторов

Графики фазных напряжений в ТП с ТМГсу в г. Кемерово

Отчет Кемеровского ЦСМ о трансформаторах ТМГсу

Отчет по замерам параметров в ТП с ТМГсу в г. Барнаул

Семь типовых проблем электропитания

Трансформаторы: алюминий или медь?

Схемы и группы соединения обмоток трансформатора

Скачать статью в формате pdf

В распределительных сетях 0,4 кВ существует проблема, связанная со значительными перекосами напряжений по фазам: на нагруженных фазах напряжение падает до 200...208 В, а на менее нагруженных за счет смещения «нуля» может возрастать до 240 В и более. Повышенное напряжение может привести к выходу из строя электрических приборов и оборудования потребителей. Асимметрия напряжений возникает из-за разного падения напряжения в проводах линии при перекосах фазных токов, вызванных неравномерным распределением однофазных нагрузок. При этом в нулевом проводе четырехпроводной линии появляется ток, равный геометрической сумме фазных токов. В некоторых случаях (например, при отключении нагрузки одной или двух фаз) по нулевому проводу может протекать ток, равный фазному току нагрузки. Это приводит к дополнительным потерям в ЛЭП (линии электропередач) 0,4 кВ, распределительных трансформаторах 10/0,4 кВ и, соответственно, в высоковольтных сетях.

Подобная ситуация характерна для многих сельских районов и может возникнуть в жилых многоквартирных домах, где практически не реально равномерно распределить нагрузку по фазам питания, в результате чего в нулевом проводе появляются достаточно большие токи, что приводит к дополнительным потерям в проводниках групповых и питающих линий и вызывает необходимость увеличения сечение нулевого рабочего провода до уровня фазных.

Перекосы напряжений сильно сказываются на работе оборудования [Л.1]. Так небольшая асиметрия напряжения (например, до 2%) на зажимах асинхронного двигателя приводит к значительному увеличению потерь мощности (до 33% в статоре и 12% в роторе), что в свою очередь, вызывает дополнительный нагрев обмоток и снижает срок службы их изоляции (на 10,8%), а при перекосах в 5% общие потери возрастают в 1,5 раза и, соответственно, растет потребляемый ток. Причем, дополнительные потери, обусловленные несиметрией напряжений, не зависят от нагрузки двигателя.

При увеличении напряжения на лампах накаливания до 5% световой поток увеличивается на 20%, а срок службы сокращается в два раза.

На трансформаторных подстанциях 10/0,4 кВ, как правило, установлены трансформаторы со схемой соединений У/Ун. Уменьшить потери и симметрировать напряжение в ЛЭП 10 кВ возможно, применив силовой трансформатор со схемой соединений Y/Zjj или A/Zjj, или симметрирующий трансформатор ТМГ-СУ(выпускаемый УП МЭТЗ им. В.И. Козлова), но такая замена связана с большими финансовыми затратами и не компенсирует дополнительные потери в ЛЭП 0,4 кВ.

Для компенсации перекоса напряжений целесообразно перераспределить токи нагрузки по фазам, выровняв их значения.

Необходимость ограничения тока нулевого провода вызвана еще и тем, что в распределительных сетях 0,4 кВ, выполненных кабелем, сечение нулевого провода обычно принимается на ступень меньше сечения фазного провода.

В целях уменьшения потерь электроэнергии в сетях 0,4 кВ за счет перераспределения токов по фазам, ограничения тока в нулевом проводе и снижения перекосов напряжений, предлагается использовать трехфазный симметрирующий автотрансформатор, устанавливая его в конце ЛЭП, в узлах нагрузки. При этом, если на линии 0,4 кВ до узла нагрузки произойдет короткое замыкание одной из фаз на нулевой провод (что в сожалению не редко бывает на воздушных ЛЭП в сельских районах), потребители за установленным автотрансформатором будут защищены от больших перенапряжений.

Автотрансформатор трехфазный, сухой, симметрирующий (сокращенно - АТС-С) содержит трехстержневой магнитопровод, первичные обмотки W1 размещенные на всех трех стержнях, соединенные в звезду с нейтралью и подключаются к сетевому напряжению, компенсационная обмотка WK выполнена в виде открытого треугольника (некоторые авторы называют его разомкнутым [Л.3]) и включена последовательно с нагрузкой.

Основные электрические схемы автотрансформатора представлены на рис.1...4.

На рис.1 представлена электрическая схема автотрансформатора с компенсационной обмоткой, когда секции этой обмотки, выполненные на каждой фазе, соединены в классический открытый треугольник и подключены к нейтрали сети, и к нагрузке.

На рис.2 представлена электрическая схема автотрансформатора с компенсационной обмоткой, выполненной в виде витков из проводникового материала, лежащих поверх обмоток всех трех фаз автотрансформатора, образуя открытый треугольник. Применение этой схемы, по сравнению с предыдущей, позволяет не только уменьшить расход обмоточного провода дополнительной обмотки, но и габаритную мощность автотрансформатора за счет освобождения окна магнитопровода и уменьшения межосевого расстояния между первичными обмотками.

Эти схемы применимы в тех случаях, когда нулевой провод нагрузки не имеет жесткой связи с заземлением и во всех случаях в пятипроводной системе с РЕ- и N-проводниками.

На рис.3 представлена электрическая схема автотрансформатора с компенсационными обмотками, выполненными в виде фазных обмоток соединенных в открытые треугольники, включенные согласно к фазным обмоткам автотрансформатора.

Конструктивно схема, представленная на рис.4, может быть выполнена аналогично схеме рис.2, т.е. фазные компенсационные обмотки выполнены поверх обмоток всех трех фаз автотрансформатора и включены в разрыв фазных проводов сети со стороны нагрузки.

Данные схемы могут использоваться, в том числе, когда нейтраль нагрузки глухо заземлена, т. е. когда нет возможности включить компенсационную обмотку автотрансформатора в разрыв нулевого провода между нагрузкой и сетью, или когда нулевой провод нагрузки по требованиям безопасности должен быть «жестко» заземлен.

При асимметрии токов нагрузки и, соответственно, токов в компенсационных обмотках, магнитные потоки, создаваемые этими обмотками в магнитопроводе автотрансформатора, будут геометрически складываться. В стержнях магнитопровода будут возникать направленные в одну сторону во всех фазах автотрансформатора потоки нулевой последовательности. Эти магнитные потоки, создают э.д.с. нулевой последовательности и, соответственно, токи I01 в первичной обмотке пропорционально коэффициенту трансформации ктр (обратно пропорционально соотношению числа витков W1/Wk).

Подключение обмотки WK выбрано таким образом, чтобы фазные токи автотрансформатора векторно вычитались из фазного тока линии наиболее нагруженной фазы и добавлялись к токам менее нагруженных фаз. Такое перераспределение приводит к более симметричному распределению токов по фазам в ЛЭП, выравниванию падений напряжения в проводах линии и, следовательно, к симметрированию напряжения на нагрузке, а так же к уменьшению тока нулевого провода и потерь в линии электропередач, и силовых распределительных трансформаторах, обеспечивая экономию электроэнергии.

Максимальная компенсация тока в нулевом проводе выполняется при равенстве ампервитков (магнитодвижущей силы) рабочей I01-W1 и компенсационной I02-WK обмоток, т.е. при I01-W1=3I02-WK , или WK=W1/3. При этом габаритная мощность автотрансформатора Рат, в зависимости от схемы подключения компенсационных обмоток, может быть в 3 раза меньше потребляемой мощности нагрузки Рн.

Для ограничения тока нулевого провода до уровня допустимого для ЛЭП, число витков компенсационной обмотки может быть соответственно уменьшено: например, для ограничения тока нулевого провода на уровне 1/3 фазного, должно быть скомпенсировано 2/3 его величины, следовательно, WK=W1/4,5. При этом габаритная мощность автотрансформатора может быть в 4,5 раза меньше потребляемой мощности нагрузки.

Перекосы фазных токов приводят к дополнительным потерям в ЛЭП 0,4кВ и далее по всей цепи транспортирования электроэнергии. Рассмотрим это на примере условной линии электропередач длиной 300м, выполненной алюминиевым кабелем сечением (3х25+1х16)мм (сопротивление фазных проводов 0,34 Ом, нулевого провода 0,54 Ом) при активной нагрузке по фазам 40, 30 и 10А. Ток в нулевом проводе, равный векторной сумме фазных токов, будет (см. векторную диаграмму на рис.5) 26,5 А. Потери в линии, как в любом проводнике, зависят от сопротивления линии и квадрата тока, проходящего по этой линии (I2 -Z^). Потери в фазных проводах, соответственно, составят -402-0,34=544 Вт, 302-0,34=3 06 Вт, 102-0,34=34 Вт, в нулевом проводе -26,5 -0,54=379 Вт, суммарные потери в линии - 1263 Вт.

Применение АТС-С позволит перераспределить токи в линии. При коэффициенте трансформации 1/3 одна треть тока нулевого провода векторно вычитается из токов нагруженных фаз и прибавляется к току менее нагруженной фазы. Токи, соответственно, станут
равными 33,8, 29,6 и 18,6 А, при этом ток нулевого провода (учитывая некоторую асимметрию магнитной системы автотрансформатора) может составлять до 10% среднего фазного тока т.е. 2,7 А.
При таком перераспределении токов суммарные потери в линии составят (33,82+29,62+18,62)·0,34+2,72·0,54 = 805Вт.
Таким образом, установка автотрансформатора АТС-С позволяет снизить потери в ЛЭП-0,4 кВ на 36 %.
Очевидно, что уменьшение падения напряжения в проводах линии пропорционально изменению тока по фазам, существенно выравнивает напряжение в узле нагрузки, в первую очередь за счет смещения «нуля».
Увеличение коэффициента трансформации выше 1/3 для трехфазных нагрузок не целесообразно и, несмотря на более равномерное перераспределение токов по фазам, приводит к увеличению потерь в ЛЭП за счет более существенного увеличения тока нулевого провода, а так же потребует больших затрат на материалы. 
Относительное значение мощности автотрансформатора АТС-С составит – S*ат= k·Sн , где: Sн – мощность нагрузки; k – коэффициент в зависимости от схемы автотрансформатора и коэффициента трансформации (kтр), представленный в таблице 1. 

Таблица 1 значения коэффициента к

Схема, рис. 1 2 3 4
ктр= 1/3 0,58 0,33 0,90 0,55
ктр = 1/4,5 0,38 0,22 0,66 0,33

Если гарантированно известен максимальный ток, протекающий в нулевом проводе нагрузки, то габаритная мощность автотрансформатора по схеме рис.1 может быть рассчитана, исходя из этого тока - Бат= 102л/л/3, а по схеме рис.2 - Бат= 102л/3 и для выше приведенного примера трехфазной несимметричной нагрузки составит, соответственно, 8,3 и 4,8 кВ-А.

Наиболее эффективным является установка автотрансформатора непосредственно у потребителя, в точке разветвления трехфазной линии в однофазные, например на вводе дачного кооператива, где практически невозможно выровнять нагрузку по фазам. В жилых многоквартирных домах установка АТС-С на ответвлениях к каждому стояку, питающему квартиры жилых домов, позволяет симметрировать напряжение, и снизить потери в трехфазных групповых и питающих линиях распределительной сети. На малых промышленных предприятиях он может применяться для питания однофазных нагрузок большой мощности: сварочных трансформаторов, выпрямителей, водонагревателей и т. д.

В настоящее время все большее применение находят статические преобразователи (выпрямители, тиристорные регуляторы, высокочастотные преобразователи), газоразрядные осветительные устройства с электромагнитными и электронными балластами, электродвигатели переменного тока с регулируемой скоростью вращения и т.д. Указанные устройства, а также сварочные трансформаторы, специальные медицинские и другие приборы могут генерировать высшие гармоники тока в системе электропитания. Например, однофазные выпрямители могут генерировать все нечетные гармоники, а трехфазные все, не кратные трем, что отражено на рис. 6 [Л.2].

Гармоники тока, создаваемые нелинейными нагрузками, могут представлять собой серьезные проблемы для систем электропитания. Гармонические составляющие представляют собой токи с частотами, кратными основной частоте источника питания. Высшие гармоники тока, накладываемые на основную гармонику, приводят к искажению формы тока. В свою очередь, искажения тока влияют на форму напряжения в системе электропитания, вызывая недопустимые воздействия на нагрузки системы. Увеличение общего действующего значения тока при наличии высших гармонических составляющих в системе может привести к перегреву всего оборудования распределенной сети. При несинусоидальных токах возрастают потери в трансформаторах, главным образом за счет потерь на вихревые токи, что требует увеличения их установочной мощности. Как правило, для ограничения гармоник в этих случаях устанавливаются высокочастотные фильтры, состоящие из сетевых реакторов и конденсаторов.

К достоинствам АТС-С следует отнести то, что они обладают способностью фильтрации токов высших гармоник, кратных трем (т.е. 3, 9, 15 и т.д.), ограничивая их протекание как из сети к нагрузке, так и наоборот. Этим самым повышается качество сети и снижаются колебания напряжения.

Как уже указывалось выше, электромагнитные балластные пускорегулирующие аппараты (ПРА) газоразрядных ламп генерируют высшие гармоники. Так, в токах натриевых ламп ДНаТ, широко используемых для целей уличного освещения, третья гармоника является превалирующей и, в зависимости от мощности лампы и типа ПРА, составляет до 5% и более (по [Л.4] третья гармоника допускается до 17,5%). Токи третьих гармоник совпадают по фазе и арифметически складываются в нулевом проводе трехфазной сети, создавая ощутимые добавочные потери, что вынуждает выполнять сечение нулевых рабочих проводников трехфазных питающих и групповых линий, равным фазному.

В этой ситуации применение АТС-С позволяет уменьшить сечение нулевых проводников, как минимум, в два раза и решить три задачи: компенсировать потери от третьей гармоники, обеспечить перевод системы освещения на «ночной режим» (одна или две фазы распределительной сети отключаются в ночные часы), перераспределяя нагрузку на три фазы; и выйти на энергосберегающий режим, выполнив отводы на автотрансформаторе для понижения напряжения. Для решения только первой задачи можно применить автотрансформатор минимальной мощности, рассчитанный на ток нулевого провода (суммарный ток третьей гармоники).

При необходимости компенсировать 5, 7 или 11 гармоники можно воспользоваться схемами рис.3 или 4. В этом случае затраты на сетевые реакторы могут быть уменьшены, т.к. компенсационные обмотки, обладая повышенным индуктивным сопротивлением для высокочастотных гармоник, могут выполнять роль сетевого реактора и, в совокупности с конденсаторами, образовывать фильтр высших гармоник. Конденсаторы подключаются между точками соединения в открытые треугольники секций компенсационных обмоток и нулевым проводом, и могу образовывать одно (см. рис.7), двух или трехступенчатый фильтр для разных частот. Величину индуктивности
секции компенсационной обмотки с достаточной достоверностью можно определить из номинальных параметров - номинального тока и коэффициента трансформации. Например, при номинальном токе Iн=25А и коэффициенте трансформации kтр=1/3 напряжение секции
будет Uсек=Uф ктр=220/3=73В, сопротивление Zсек=Uсек/Iном=73/25=2,9Ом (пренебрегая малым активным сопротивлением обмотки) считаем индуктивным, и тогда индуктивность секции

Lсек=Zсек/w=2,9/314-10 =9,2мГн. При этом надо учитывать нелинейный характер сопротивления: с уменьшением нагрузки сопротивление возрастает. 

При заказе автотрансформатора возможность подключения конденсаторов должна быть оговорена в заявке на изготовление.

Частным случаем является симметрирующий автотрансформатор, целенаправленно предназначенный для питания однофазной нагрузки (см. рис.8 и 9). Для большей симметрии токов по фазам коэффициент трансформации можно сделать больше, чем 1/3, с некоторым увеличением тока нулевого провода.

Рассмотрим это на примере. На вводе трехфазной сети установлен автоматический выключатель, рассчитанный на длительно допустимый ток 25 А. Требуется подключить сварочный трансформатор мощностью 10 кВА (напряжение сети 220 В, ток сварки 160 А, напряжение холостого хода 60 В, ПВ 60%). Потребляемый сварочным трансформатором ток составит 10-1000/220=45,5 А, а с учетом ПВ эквивалентный ток будет 45,5-//0,6=35,2 А, что в 1,4 раза превышает допустимый. Конечно, можно применить обычный автотрансформатор 380/220 В, выполненный на базе трансформатора ОСМР-6,3 (мощностью 6,3 кВА), в этом случае нагрузка будет перераспределена только на две фазы (линейный ток - 20,3 А), но можно применить симметрирующий автотрансформатор (см. схему рис.9) с коэффициентом трансформации 1/2, преобразующий однофазную нагрузку в трехфазную и выровнять нагрузку по всем фазам, снизив ток в сети до 17,6 А, при этом ток в нейтрали, при отсутствии других нагрузок так же будет 17,6 А. 

В этом случае автотрансформатор можно изготовить на базе трансформатора ТСР-6,3. Можно также использовать симметрирующий автотрансформатор с коэффициентом трансформации 1/3, ограничив ток в рабочей фазе длительно допустимым для автоматических выключателей - током 23,4А, при этом в двух других фазах будет протекать ток 11,8А при отсутствии тока в нулевом проводе.

Автотрансформатор может быть сделан на базе трансформатора ТСР-2,5.

Снижение потерь в сети по сравнению с прямым включением приведено в таблице 2.

Таблица 2

Автотрансформатор На базе ОСМР-6,3 Симметрирующий АТС-С
Коэффициент трансформации 1/1,73 1/3                                 1/2

Учитывая, что сварочный трансформатор генерирует высокочастотные гармоники, в том числе кратные трем, предпочтение следует отдавать симметрирующему автотрансформатору.

Проведенные испытания автотрансформаторов АТС-С в лаборатории УП МЭТЗ им. В.И. Козлова показали положительные результаты и полностью подтвердили свою эффективность (см. Приложение 1 «Результаты испытаний автотрансформатора АТС-С-25»).

Планируется разработка серии автотрансформаторов от 25 до 100 кВА как в открытом исполнении IP00, так и в защитных кожухах исполнений IP21 для установки под навесом и IP54 для установки на открытом воздухе, в том числе непосредственно на опорах ЛЭП 0,4кВ. В автотрансформаторах, при необходимости, в целях повышения или понижения напряжения, может быть предусмотрена возможность переключений регулировочных отводов при его монтаже.

В настоящее время заводом принимаются индивидуальные заказы на автотрансформаторы АТС-С мощностью до 100 кВА.

Приложение 1

Результаты испытаний автотрансформатора АТС-С-25

На примере четырехпроводной ЛЭП-0,4кВ 

Длина линии, м 300
Провод алюминиевый сечением, мм² фазы - 25 нуля - 10
Сопротивление провода, Ом фазы - 0,34 нуля - 0,86
Сопротивление нагрузки (активное), Ом Фаза: А-5,99 В-5,83 С-5,59
Режим нагрузки без автотрансформатора 3х-ф 2х-ф 1о-ф
Линейные токи нагрузки, А
фаза А 36,5 36,5 36,5
фаза В 37,5 37,5 0,0
фаза С 39,0 0,0 0,0
в нулевом провода N 2,2 37,0 36,5
Потери мощности в линии, Вт
фаза А 456 456 456
фаза В 481 481 0
520 0 0
в нулевом провода "N" 4 1172 1140
ИТОГО 1461 2109 1596
Режим нагрузки с автотрансформатором 3х-ф 2х-ф 1о-ф
Линейные токи до АТС-С, А
фаза А 36,0 32,5 27,3
фаза В 36,0 34,1 9,3
фаза С 39,0 9,0 8,4
в нулевом проводе "n" 3,8 11,0 11
Потери мощности в линии, Вт
фаза А 443 361 255
фаза В 443 398 30
фаза С 520 28 24
в нулевом проводе N 12 103 103
ИТОГО в линии

1419 890 412
с учетом потерь в АТС-С
сопротивление фазной обмотки, Ом 0,2443
сопротивление компенсирующей обмотки, Ом 0,038
Токи фазной обмотки АТС-С, А
фаза А 0,4 8,1 8,9
фаза В 1,4 9,2 9,3
фаза С 1,3 8,9 8
Потери мощности в обмотках АТС-С, Вт
фаза А 0,04 16,03 19,35
фаза В 0,48 20,68 21,13
фаза С 0,41 19,35 15,64
в нулевом проводе N 0,18 52,09 50,67
Потери холостого хола АТС-С, Вт 50
ИТОГО в АТС-С 51,1 158,1 156,8
ИТОГО 1470,1 1048,2 568,8
Экономия электроэнергии, Вт -8,7 1061 1027

Опросный лист для заказа автотрансформатора АТС-С

_____________________________________________________________________________________

В каталоге нашей компании вы также можете ознакомиться с трансформаторами серийного производства. Всегда в наличии сухие трансформаторытрансформаторы ТСЗ и ТС, а также масляные трансформаторы ТМ и трансформаторы ТМГ в герметичном исполнении.


Перейти к каталогу трансформаторов


Назад в раздел